CDF

Physics Analysis / Publication Overview

- experiment, computing, and physics status -

Luciano Ristori (Pisa INFN) Young-Kee Kim (University of Chicago)

Entry to CDF Physics
http://www-cdf.fnal.gov/physics/physics.html

The CDF Collaboration

North America

3 Natl. Labs 27 Universities

3 Universities

Europe

1 Research Lab 6 Universities

1 University

4 Universities

2 Research Labs

2 Universities

1 University

1 University

Asia

4 Universities1 Research Lab

1 Research Lab

3 Universities

12 countries, 61 institutions, ~800 physicists

CDF Data Taking Efficiencies

Data Taking Efficiency L(recorded) / L(delivered): beam losses, Triggers/DAQ, COT related, other systems Data for Physics 340 - 390 pb⁻¹ excluding "compromised COT performance period"

Run II Goal > 90%

Issues Faced by CDF Operations in FY04

- Accelerator incidents damaging the Silicon detector
 - Lost ~2% chips
- Losses from accelerator: both "DC" beam as well as in abort gaps
 - Silicon placed on Standby
 for high loss conditions and high loss potential
 - Conditions much improved at the end of FY04
- Loss spikes resulting from truck traffic and changes in HVAC conditions in the collision hall
- CDF vs. D0 luminosity differences at the start of stores
 - A lot work by both experiments and Accelerator Division
- Substantial loss in gain for the Central Outer Tracker

Gain Loss of the CDF Outer Tracker (COT)

- COT experienced significant gain loss up to x2 loss in gain that is both r,
 φ and z dependent.
- Turned off SL1,2 and reduced HV of SL 3,4,5 while we investigated the problem to prevent further damage - in case the process was irreversible. (Compromised COT performance Period) - B physics program suffered during this period due to trigger track fakes
- Formed an international committee of chamber experts to advice CDF, chaired by R. Kephart.
- Degradation source comes from hydrocarbons coating "sense" wires.

- Oxygen fixed it.
- Used the recirculation system (built to increase gas flow rate by x10) to add air, then Oxygen.
- Chamber is now fully recovered (late May, 2004).
- 85 pb⁻¹ of date collected with compromised chamber.

Issues Facing CDF Operations in FY05

- Forward Calorimeter Energy Scale is not stable.
 - Radiation damage causing degradation of plastic in plug region
 - Need to monitor the detector, and calibrate it more automatically.
- Monitoring of Low Beta Quad Positions an issue for beam stability (we are sensitive to their positions - losses).
- Remain vigilant for further signs of gain loss in the COT.
 Goal is to reproduce effect in a test chamber.
- We need to extend the lifetime of the Silicon detectors by a factor of 2 beyond design.
 - Even more crucial with the renewed optimism based on this year's accelerator performance
 - ≥ 4 fb⁻¹ by 2008 baseline
 - ~8 fb⁻¹ (x2 improvement) if electron cooling works maximally design
- The unknown problems

Triggers and DAQ

CDF: High rate trigger system for B Physics - Challenging

Level	Input / Output	Rejection Rate	# Paths	Information
1	1.7MHz / 25kHz	~70	40	Tracks, EM/Had Cal, Muon
2	25kHz / 350Hz	~70	120	Shower Max, SVT Algorithms run in Processor
3	350Hz / 70Hz(20MB/s)	~5	300	Full Detector Readout Offline Reconstruction

Trigger Paths:

- e, μ, τ, γ, track, jet, B, ν, ...
- Combinations of these objects

Silicon Vertex Trigger (SVT)

Trigger Issues Facing CDF Operations in FY05

- Coping with 25% more Initial Instantaneous luminosity by the end of FY05
 - Background rates grow faster than the signal rates.
 - To remain efficient for physics, it is not sufficient to maintain status quo.
 - Must continue to improve trigger intelligence (a lot of improvement has been made) and throughput to keep up with higher luminosity.
- Some of Trigger/DAQ "Run IIb" upgrades already installed.
 Will be commissioned with beam.
 - New Level-2 (Pulsar System) Decision Crate
 - Parallel Data Logger writing simultaneously to multiple disks (20MB/s → 40MB/s)

Offline Computing Status and Plan

- Globally distributed computing resources
 - Data Logging bandwidth upgrade
 - 20MB/s → 40MB/s(FY05) → 60MB/s (FY06)
 to retain B physics program at high luminosity
 - Need more computing resources for analysis and MC production
 - Proposed **remote** computing resources to IFC (International Finance Committee) in 2003, then to PAC in 2003.
 - 2003 PAC endorsed our proposal.
 - Significant expansion of remote computing capacity since 2003.
 - Goal and achievement of CPU located off-site.

Time	Goal (offsite computing)	Achieved
Summer 04	25%	35%
Fall 04		43%
Summer 05	50%	

Offline Computing Status and Plan (cont.)

- Globally distributed computing resources (cont.)
 - Contribution from off-site computing
 - Currently Monte Carlo Production
 - Moving toward significant user analysis
 - Locate datasets at remote institutions Italian institutions, Karlsruhe
 - Physics analyses produced with these datasets.
 - » B physics: J/ψ lifetime, B tagging
 - » Top physics: Single top search
 - Computing Resources Board
 - Oversees usage of remote resources
 - Coordinates policy, deployments, problem solving
- CDF working towards common GRID tools with Computing Division.

Data Reprocessing

- CDF Production executable is fast.
 - As luminosity increases, the executable time grows ~linearly with a small slope: ~40% increase from 10³¹ cm⁻²s⁻¹ to 10³² cm⁻²s⁻¹.
- Runs on small farms.
- Reprocessing data.
 - Over 1 Billion events with ~500 pb⁻¹
 - Early data (Mar. 02 Aug. 03) reprocessed twice.
 - This year's data reprocessed once.
 - ~10 million events / day
 - Took ~2 months to reprocess all the data up to Feb. 2003 big effort to prepare ICHEP04.
- High quality (well calibrated) data likely we will not reprocess this data again.
- No problem processing data expected this year in real time

Data Processing, Software (FY05) Plan

- Single-Pass Processing
 - Procedure up to now:
 - Real time (within 3 days) calibrations COT, SVX, Beamline
 - Process full data
 - Calorimeter calibration (a couple of months)
 - Reprocess full data
 - Move toward Single-pass processing (begins with this winter's data).
 - Process ~20% of full data for monitoring and calibration
 - Real time (within 3 days) calibrations COT, SVX, Beamline
 - Calorimeter calibration within a month
 - Process full data
- Expand offsite computing usage for MC prod:~300 M events (x2 FY04)
- Code releases
 - So far every 6 months. Codes are maturing once a year
- Organized effort to streamline offline operations: data and MC processing, to reduce person power needs in pre-LHC era
 - Single-pass Processing, SAM and GRID tools, ...

Resource Issues Facing Beyond 2005

- Renegotiating MOUs with institutions, current & beyond 2005.
 - Current MOUs are good through 2005, but written in ~2001
- Many groups being "downsized"
 - By pressure from funding agencies
 - Need to ramp up on LHC
- Will get very difficult to operate the experiment and do physics.
- Institutions have been hiring CDF/LHC postdocs do service work on LHC and physics/operations(?) on CDF.
 - Postdocs need physics analysis for career advancement.
- LPC (LHC Physics Center) promise to mitigate sudden flow
 - Postdocs can find critical mass of people at Fermilab preparing for LHC.
 - Maintain a role in both CDF and LHC.

Physics Group Organization

Physics Groups: 2 leaders / group

QCD B Electroweak (W,Z + ...) Exotic (New Phenomena)

dilepton I+jets all hadrons mass single top

Analysis Groups: 2 leaders / group

Common Tools, Issues:

Working groups:

Tracking, e, μ , τ , γ , b-tagging, jet calibration, ...

Final results discussed at Joint Physics Meeting

In addition

Detector Calibration

Offline Reconstruction

Monte Carlo Generation, Simulation, Production

Detector and Trigger Performance, Common Analysis Tools

COT Tracking, Calorimeter and Simulation

Silicon Tracking

Silicon System:

L00 (1 layer, single sided) SVX II (5 layers, double sided) ISL (1 layer in $|\eta|$ <1, 2 layers in 1< $|\eta|$ <2), double sided)

94% efficiency with $r-\phi$ 83% efficiency with $r-\phi$ and z0.5-1.5% fake rate

Added ISL:

Used in forward-backward W charge asym. & Z' search

Added L00:

implemented in tracking began using in physics analysis

Performance keeps improving.

$$\tau(B^{\pm}) = 1.662 \pm 0.033(stat) \pm 0.008(syst)^{ct, cm}$$

Tau and Hadron Identification

- Tau Important for Physics beyond the Standard Model:
 - many models with enhanced τ couplings

- dE/dx from Drift Chamber and Time-of-Flight Detector
 - B physics: K-π separation at low P_T
 - New particle searches: charged massive particles

Run II Publications

- 59 papers published, submitted, or under Collaboration review
 - 17 papers published or submitted
 - 6 papers published 5 PRL and 1 PRD
 - 2 paper accepted 2 PRL
 - 9 papers submitted 5 PRL and 3 PRD, 1 PRD-RC
 - 5 second drafts out to the CDF collaboration
 - 7 first drafts out to the CDF collaboration
 - 30 under Godparents review
- 7 godparent committees about to be assigned.
- Time scales for publication vary due to different degrees of sophistication required by each particular analysis.

year	2001	2002	2003	2004	2005
	First Collision	First Physics			Goal
	Commissioning	data			
# of papers			4	~18	~40

Physics with Top Quarks

Publications:

- 4 papers published or submitted
 - Top pair cross section in dilepton (PRL 93, 142001, 2004)
 - Top pair cross section in lepton+jets with vertex b-tag & kinematics (submitted to PRD)
 - Top pair cross section in lepton+jets with vertex b-tag (sub. PRD)
 - Single top search (submitted to PRL)
- 9 papers Collaboration publication review
 - Anomalous kinematic distribution in top dilepton
 - Top pair production in lepton+jets with kinematics
 - Top pair production in lepton+jets with soft-muon tag
 - Top pair production in e/μ + tau
 - Top branching ratios
 - W helicity
 - Top mass in lepton+jets with dynamical likelihood method
 - Top mass in lepton+jets with template method
 - Top mass in lepton+jets with multivariate method

Top Pair Production - Cross Section

Top Pair Production - Cross Section

Different measurements: Test different assumptions, Look for new physics

Measurements of M_{top} and M_W

- Important SM parameters
- Ingredients of indirect Higgs mass constraint

- Top mass measurement
 - Complicated event topology

Top Quark Mass Measurements

2 PRDs under Collaboration review. Improved simulation: ~6 GeV → ~3 GeV

Top Quark Properties

- Is tWb vertex SM? W helicity
 - SM is V-A theory:
 - $F_0 = 70\%$ longitudinal
 - F₂ = 30% left-handed
 - Assume F₊=0 (ie no V+A)
 - Measure F₀
 - $F_0 > 0.25 @ 95\% C.L.$
- Unexpected top decay modes?
 - 3 gen. CKM matrix unitarity
 - |V_{tb}|~1.0
 - BR(t→Wb)/BR(t→Wq) ~1.0
 - BR(t→Wb)/BR(t→Wq) > 0.62
 at 95% C.L. (CDF)
- t → H⁺b instead of W⁺b ?

Single Top Production (via weak interaction)

New Physics!

- Similar topology to Higgs Signature (WH → Wbb)
- Topology: somewhere between W+jets and Top pair

95% C.L. limits Observed (Expected)

CDF Prelim. 162 pb⁻¹

Channel	CDF (pb)	
s	< 13.6 (12.1)	
t	< 10.1 (11.2)	
s+t	< 17.8 (13.6)	

Physics with Vector Bosons

Publications:

- 3 papers submitted or published
 - W & Z cross sections (e, μ) PRL
 - Wγ & Zγ cross sections PRL
 - Forward-Backward Asymmety in dielectron PRD
- 5 papers in publication review
 - ZZ+ZW cross section PRD-RC
 - WW cross section PRL
 - W Asymmetry
 - W & Z cross sections (e, μ) PRD
 - W Mass

W Mass Measurement

W Mass Measurement

Experiment	ΔM_W
Run I Combined	59 MeV
Run I CDF	79 MeV
Run I D0	84 MeV
LEP-II Combined	42 MeV
ALEPH	58 MeV
(Single Best)	

CDF Run II W Mass:

~76 MeV by this Winter (~200 pb⁻¹) - the level of Run I CDF uncertainty ~50 MeV by Summer 2005 (~360 pb⁻¹) - single best measurement

Under Godparents Review.

W_γ, Z_γ Production

u- or t-channel

s-channel

final-state radiation

CDF Run II Preliminary

WW, WZ, ZZ Production

- WW (SM 12.5 ± 0.8 pb)
 - Trilinear Gauge Coupling hard to beat LEP (40k WW)
 - Tevatron can produce higher mass than LEP.
 - Important backgrounds to Higgs search (H -> WW)!

Still searching for WZ, ZZ (SM WW 5.2 ± 0.4 pb)

 $\sigma(WZ)$ < 13.9pb @ 95% C.L.

Physics with Beauty and Charm Hadrons

Publicationss:

- 6 papers published or submitted
 - D_s, D⁺ mass difference (Phys. Rev. D68, 072004, 2003)
 - Search for D -> μμ (Phys. Rev. D68, 091101, 2003)
 - Prompt Charm cross sections (Phys. Rev. Lett 91, 241804, 2003)
 - B_d, B_s -> μμ (PRL 93, 032001, 2004)
 - Observation of X(3872) (Phys. Rev. Lett 93, 072001, 2004)
 - D* relative Br and CP asymmetry (submitted to Phys. Rev. Lett.)
- 11 Papers in publication review
 - Pentaquark search
 - Inclusive J/ψ cross section
 - B hadron masses (including B_s and Λ_b)
 - Br of $\Lambda_b \to \Lambda_c \pi$
 - Ratio of Br(B $^{\pm} \rightarrow J/\psi K$) / Br(B $^{\pm} \rightarrow J/\psi \pi$)
 - Hadronic moments in semileptonic B decays
 - B → hh and CP violation
 - $.\Lambda_{h} \rightarrow Kp, \pi p$

- Br of $B_s \rightarrow D_s \pi$
- B_s/B₀ branching fraction ratio
- B_s lifetime difference

B Physics

- Mixing
- CP Violation
- Rare Decays

 B_s Mixing World limit: $\Delta m_s > 14.4 \text{ ps}^{-1}$

SM pred.: $15 < \Delta m_s < 27 \text{ ps}^{-1}$ (99% probability)

B_s Mixing

- Complex measurements involving many detector systems and analysis tools.
 - Triggering: optimized SVT algorithms
 - Exclusive reconstruction modes ($B_s \rightarrow D_s \pi + ...$)
 - Tagging (ϵD^2): e, μ , jet charge, same-side tag (Kaon), opposite-side tag (Kaon)
 - Involves TOF + dE/dx
 - Decay length resolution
 - Maximize L00 performance
- We have appointed B_s Mixing coordinators Bedeschi and Kroll
- 4 Internal workshops so far.
- Good progress on all fronts
 - e.g. B_d mixing measurements in semileptonic and fully reconstructed modes
- Plan to present the first results on B_s mixing by Summer 05

B_d Mixing Measurements

prepare machinery for B_s mixing analysis

semileptonic modes:

flavor (B or B) tagging efficiency at production $\varepsilon D^2 \sim 2-3\%$ (CDF, D0)

 $\Delta m_d(CDF) = 0.536 \pm 0.037(stat) \pm 0.017(syst) pb^{-1}$

fully reconstructed modes:

$$B_d \to J/\psi \ K^{*0} \to \mu^+\mu^- \ K^+\pi^-, \ B_d \to D^-\pi^+, \ D^{*-}\pi^+, \ D^-\pi^+\pi^-\pi^+, \ D^{*-}\pi^+\pi^-\pi^+$$

 Δm_d (CDF) = 0.526 ± 0.056(stat) ± 0.005(syst), $\epsilon D^2 \sim 1\%$ (SST)

B_s Hadronic Signals

Channel	Observed events	Luminosity (pb^{-1})	Yield per 250 pb^{-1}	S/B
$B_s \to D_s \pi(D_s \to \phi \pi)$	339 ± 22	264	320	5.7
$B_s \to D_s 3\pi (D_s \to \phi \pi)$	95 ± 17	264	90	1.0
$B_s \to D_s \pi(D_s \to K^*K)$	190 ± 25	240	200	1.3
$B_s \to D_s \pi(D_s \to 3\pi)$	57 ± 11	124	115	1.75

Limit / Measurement of B_s Oscillation

World limit: $\Delta m_s > 14.4 \text{ ps}^{-1}$

SM pred.: $15 < \Delta m_s < 27 \text{ ps}^{-1}$ (99% prob.)

$B_s \rightarrow J/\psi \phi$: $\Delta \Gamma_s$ and Δm_s

$$\tau(B_s) = 1.37 \pm 0.10 \pm 0.01 \text{ ps}$$

 $\Delta \Gamma_s \quad \text{Lifetime difference } (\Delta \Gamma_s) \text{ between B}_s \text{ eigenstates}. \\ \text{CP-odd}(B_{\text{heavy}}) \text{ and CP-even}(B_{\text{light}}) \text{ have different angular distributions}.$

CDF Preliminary, L=258pb⁻¹ candidates per 50 μ 10 10 10 10 10 10 10 10 data SM: SigAll $\Delta\Gamma_s/\Gamma_s$ (SM) = 0.12 ± 0.06 .Sig_{Light} (hep-ph/0012219) Sig Heavy Bkg Long-lived Bkg Short-lived CDF: Fit prob: 26.4% $\Delta\Gamma_{\rm s} = 0.46 \pm 0.18 \pm 0.01 \, \rm ps^{-1}$ $\Delta\Gamma_{\rm s}$ / $\Gamma_{\rm s}$ = 0.71 ^{+0.24} _{-0.28} ± 0.01 (with $\Gamma_s = \Gamma_d$ constraint) -0.1 ct, cm

 Δm_s To first approx: $\Delta \Gamma_s / \Delta m_s = 1.5\pi m_b^2 / m_t^2 = 3.7^{+0.8}_{-1.5} \times 10^{-3}$ (see Beneke et al. for full form NLO analysis, hep-ph/9808385)

 Δm_s (indirect) = 125 $^{+69}_{-55}$ ps⁻¹ (SM 99%: 15 < Δm_s < 27 ps⁻¹)

Charmless B Decays $B_{s,d} \rightarrow h^+h^-$

- $B_{s,d} \rightarrow h^+h^-$
 - $B_d \rightarrow \pi\pi$ (CPA from B factories) and Br(B_s \rightarrow KK) from CDF: sensitive to CP angle γ (Fleischer) $B_{d,s} \rightarrow \pi\pi$, K π , KK: statistical separation by kinematics & particle ID. 125 - B_d $\rightarrow \pi\pi$ (CPA from B factories) and
 - − $B_{d.s}$ → $\pi\pi$, $K\pi$, KK: statistical

$B^0 \rightarrow \pi\pi$	134	15%
$B^0 \rightarrow K\pi$	509	57%
$B_s \rightarrow KK$	232	26%
$B_s \rightarrow K\pi$	18	2%

$$A_{CP} = [N(B_d \to K^-\pi^+) - N(B_d \to K^+\pi^-)] / N(B_d \to K^-\pi^+, K^+\pi^-)$$

= -0.04 ± 0.08 ± 0.01 (L = 180 pb⁻¹)

 $A_{CP}^{BaBar} = -0.133 \pm 0.030 \pm 0.009, A_{CP}^{Belle} = -0.101 \pm 0.025 \pm 0.005$

$B_s, B_d, D^0 \rightarrow \mu^+ \mu^-$

SM expectations:

Br(B_s
$$\rightarrow \mu\mu$$
) ~ 3.5 x 10⁻⁹
Br(D⁰ $\rightarrow \mu\mu$) ~ 10⁻¹³

SUSY: Br(B_s
$$\rightarrow \mu\mu$$
) $\sim \tan^6\beta$

Can be enhanced by 10-1000.

e.g.
$$\tan \beta \sim 40$$
 for Br $\sim 10^{-7}$

95% CL $\mu^+\mu^-$ Br limits:

 B_s : 7.5 x 10⁻⁷ (unique to Tevatron)

 B_d : 1.9 x 10⁻⁷

 $D^0: 2.5 \times 10^{-6}$

Excludes SO₁₀ space(hep-ph/0304101), large parts of R-parity violating SUSY. Smaller exclusion in mSUGRA MSSM

Improved limits with full data sample by this winter.

QCD Physics

- Publications:
 - 2 papers godparent pub. review
 - Jet shape analysis

Di-photon cross section

Jet shapes and Energy flows in jets: Constrain phenomenological models Describing soft-gluon rad and undelying Event in hadron collisions.

Pythia + Tune A describes data well.

QCD test, Background for Potential new physics processes

- Pythia disagrees by x2
- Require resummed full NLO

New Particle and Phenomena Searches

Publications:

- 4 paper published or submitted
 - H⁺⁺ -> ee, μμ, eμ (PRL accepted)
 - e* -> eγ (submitted to PRL)
 - Diphoton + missing E_⊤ (submitted to PRD)
 - Search for leptoquarks in jets + missing E_T (submitted to PRL)
- 9 papers in publication review
 - Search for Z' -> ee, μμ (high mass dilepton)
 - Search for W' -> ev
 - Search for 1st and 2nd generation leptoquarks
 - Stable H⁺⁺ search
 - WH -> Wbb Standard Model Higgs search
 - WH -> WWW* Standard Model Higgs search
 - H -> WW Standard Model Higgs search
 - Gluino / Stottom search
 - Monopole search

Standard Model Higgs Search

 $M_H < 130 \text{ GeV: W,Z} + H (\rightarrow bb), M_H > 130 \text{ GeV: H} \rightarrow WW$

- SM: Limits already exceeding Run I results.

 Sensitivity beyond LEP exclusion starts at ~2 fb⁻¹.
- New Physics: Interesting sensitivity to other new physics sooner?
- Improvements expected from
 - Better *b* tagging, topological (spin 0) information, more channels(ZH), better mass resolution ($Z \rightarrow$ bb sample)

MSSM Higgs Search

at high $tan \beta$:

- enhanced x-sections
- heavy flavor (b, τ) preferred

 ϕ (from gg or qq) or $bb\phi$ production with $\phi \rightarrow \tau\tau$

Leptoquarks

- Leptoquarks appear in many SM extensions.
 - LQ carry both lepton and baryon number
- Limits
 - First generation:
 - $LQ_1 \rightarrow eq (100\%)$
 - 230 GeV at 95% CL
 - $LQ_1 \rightarrow eq (50\%)$
 - 176 GeV at 95% CL
 - Second generation:
 - $LQ_2 \to \mu q (100\%)$
 - 241 GeV at 95% CL
 - Generation independent:
 - $LQ_1 \rightarrow vq (100\%)$
 - 78-117 GeV excluded

Very High P_T Physics

SM High Mass Production:

New Physics at high mass:

- Resonance Signature
 - Spin-1: Z'
 - Spin-2: Randall-Sundrum (RS) Graviton
- Tail Enhancement
 - Large Extra Dimensions:
 Arkani-Hamed, Dimopoulos,
 Dvali (ADD)
 - Contact interaction

Z' by CDF with ee + $\mu\mu$ (815 GeV w/ SM decays)

Conclusions

Detectors

- CDF detectors are performing well.
- Triggers & DAQ continuously improving

Data analysis

- Producing many physics results. Publications from all physics groups - making good progress
- currently analyzing ~400 pb⁻¹ data (4 x Run I data)
 - Summer 2003 results with ~100 pb⁻¹
 - Summer 2004 results with ~200 pb⁻¹
 - Expect Summer 2005 results with ~400 pb⁻¹
- understanding detectors and backgrounds
- developing and optimizing physics algorithms
- much better measurements will come soon.

Coming year

- Double the data again by summer 2005 hopefully (8 x Run I)
- Opportunity for discovery good with new confident in luminosity.

Back-Up Slides

Accelerator Performance

Peak luminosity > 10³² cm⁻² sec⁻¹ Total ~0.68 fb⁻¹ delivered so far

Note that FY04 had substantially fewer weeks of Accelerator operations than FY03.

Gain Loss of the CDF Outer Tracker (COT)

- COT experienced significant gain loss up to x2 loss in gain that is both r, ϕ and z dependent.
- Degradation source comes from hydrocarbons coating "sense" wires.
- Turned parts of COT off and reduced HV on other sections of COT while we investigated the problem to prevent further damage - in case the process was irreversible. (Compromised COT performance Period)
- B physics program suffered during this period due to trigger track fakes
- Formed an international committee of chamber experts to advice CDF, chaired by R. Kephart.

Pulse Width vs Phi for each SL

Pulse Width vs Z for each SL

The Solution for the COT Gain Loss

- Built a gas recirculation system in order to move gas through the chamber x10 faster than before.
- During this installation, observed gain recovery (a small amount of air enters the chamber). Control experiment with air confirmed gain recovery.
- Used the recirculation system to add air and then Oxygen.
- Chamber is now fully recovered (late May, 2004).
- 85 pb⁻¹ of date collected with compromised chamber.

Silicon Tracking

SVX II 3-hit efficiency and fake rate for tracks in the COT fiducial

B-jet Tagging - displaced vertices or soft leptons

Improve S:B by exploiting knowledge of B hadrons

Physics at Tevatron

- Probes physics at high Q²
 - Direct searches
 - Top physics
 - High E_T jets
- ... to intermediate Q²
 - Precision electroweak physics
- ... to low Q²
 - B and charm physics
- Selected topics (only a few highlights) discussed today (L = 50 - 350 pb⁻¹)

Top Quark

- Is it the Standard Model Top Quark?
- Does its large mass probe new physics?
- Probes:
 - Decay mode: 100% to Wb in SM
 - V-A coupling: W helicity in top decays
 - Event topology
 - Comparing cross sections in different decay modes and methods
 - Top mass
- Top pair production via strong interaction

85% qq 15% gg at Tevatron
0.8 event / hour at recent lum

10% qq 90% gg at LHC

B Mixing

• B_d , B_s oscillations are sensitive to $|V_{td}|$, $|V_{td}|$

Compromised by hadronic uncertainties

Most cancel in B_d/B_s oscillation ratio

$$\frac{|V_{td}|}{|V_{ts}|} = 1.01\xi \sqrt{\frac{\Delta m_d}{\Delta m_s}} \quad |V_{ts}| >> |V_{td}| \implies \Delta m_s >> \Delta m_d$$

New physics may affect Δm_s/Δm_d

 $.\Delta m_s$ prerequisite for time-dependent B_s CP violation measurement

World limit:

$$\Delta m_s > 14.4 \text{ ps}^{-1}$$

SM pred. (99% prob.):
$$15 < \Delta m_s < 27 \text{ ps}^{-1}$$

Fermilab PAC meeting, Nov. 12, 2004

Luciano Ristori and Young-Kee Kim